A reciprocating magnetic field assisted on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry determination of trace tetracyclines in water.

2021 
Abstract A reciprocating magnetic-field-assisted on-line solid-phase extraction (RMF-SPE) method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for continuous enrichment of trace chemicals in water samples. Under the assist of the reciprocating magnetic field, carboxyl-modified magnetic nanoparticles (CMNPs) were applied to prepare microcolumn with even dispersion by periodical motion, instead of traditional compaction as extraction sorbents. When water sample passed through the extraction region, dynamic sorbents generates an advantage of countless contacts between sorbents and targets without blocking for high efficient extraction. In this study, the on-line RMF-SPE method was established and evaluated by determination of tetracyclines (TCs) from water samples as analysis models, including oxytetracycline, tetracycline, demeclocycline, metacycline, chlortetracycline, and doxycycline. Experimental conditions have been investigated such as flow rate, reciprocating speed, elution time, and so on. The method showed high relative recovery (95.4–111.1%) and good repeatability with RSD from 2.9 to 11.8% for the 200 mL water sample. The linearity range, limits of detection (LODs), and limits of quantification (LOQs) were 0.5–200 μg L−1 (chlortetracycline) and 0.1–200 μg L−1 (other TCs), 12.0–74.1 ng L−1, and 40.1–247 ng L−1, respectively. More importantly, the high enrichment factors in a range of 204 (chlortetracycline) to 276 (demeclocycline) indicate that a small amount of dynamic sorbents (only 10 mg) give full play to extraction attributing to the reciprocating movement, especially for trace analysis and continuous extraction, which is significant for water samples from sea, river and domestic waste.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []