Direct numerical simulation of a fully developed compressible wall turbulence over a wavy wall

2018 
ABSTRACTCompressible turbulent channel flow over a wavy surface is investigated by direct numerical simulations using high-resolution finite difference schemes. The Reynolds number considered in the present paper is 3380 based on the bulk velocity, the channel half-width and the kinetic viscosity at the wall. Four test cases are simulated and analysed at Mam = 0.33, 0.8, 1.2, 1.5 based on the bulk velocity and the speed of sound at the wall. We mainly focus on the curvature and the Mach number effects on the compressible turbulent flows. Numerical results show that although the wavy wall has effects on the mean and fluctuation quantities, log law still exists in the distribution of the wave-averaged streamwise velocity if the roughness effects are taken into consideration in the scaling of it. Near-wall streaks are broken by the wavy surface and near-wall quasi-streamwise vortices mostly begin at the upslope of the wave and pass over the crest of it. The wavy wall makes the turbulence more active and the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []