Catalytic bioscavengers as countermeasures against organophosphate nerve agents

2018 
Abstract Recent years have seen an increasing number of incidence, in which organophosphate nerve agents (OPNAs) have been used against civilians with devastating outcomes. Current medical countermeasures against OPNA intoxications are aimed at mitigating their symptoms, but are unable to effectively prevent them. In addition, they may fail to prevent the onset of a cholinergic crisis in the brain and its secondary toxic manifestations. The need for improved medical countermeasures has led to the development of bioscavengers; proteins and enzymes that may prevent intoxication by binding and inactivating OPNAs before they can reach their target organs. Non-catalytic bioscavengers such as butyrylcholinesterase, can rapidly bind OPNA molecules in a stoichiometric and irreversible manner, but require the administration of large protein doses to prevent intoxication. Thus, many efforts have been made to develop catalytic bioscavengers that could rapidly detoxify OPNAs without being inactivated in the process. Such enzymes may provide effective prophylactic protection and improve post-exposure treatments using much lower protein doses. Here we review attempts to develop catalytic bioscavengers using molecular biology, directed evolution and enzyme engineering techniques; and natural or computationally designed enzymes. These include both stoichiometric scavengers and enzymes that can hydrolyze OPNAs with low catalytic efficiencies. We discuss the catalytic parameters of evolved and engineered enzymes and the results of in-vivo protection and post-exposure experiments performed using OPNAs and bioscavengers. Finally, we briefly address some of the challenges that need to be met in order to transition these enzymes into clinically approved drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    254
    References
    23
    Citations
    NaN
    KQI
    []