Simulation Study on the Effect of Doping Concentrations on the Photodetection Properties of Mg2Si/Si Heterojunction Photodetector

2021 
To develop and design an environmentally friendly, low-cost shortwave infrared (SWIR) photodetector (PD) material and extend the optical response cutoff wavelengths of existing silicon photodetectors beyond 1100 nm, high-performance silicon-compatible Mg2Si/Si PDs are required. First, the structural model of the Mg2Si/Si heterojunction was established using the Silvaco Atlas module. Second, the effects of the doping concentrations of Mg2Si and Si on the photoelectric properties of the Mg2Si/Si heterojunction PD, including the energy band, breakdown voltage, dark current, forward conduction voltage, external quantum efficiency (EQE), responsivity, noise equivalent power (NEP), detectivity, on/off ratio, response time, and recovery time, were simulated. At different doping concentrations, the heterojunction energy band shifted, and a peak barrier appeared at the conduction band of the Mg2Si/Si heterojunction interface. When the doping concentrations of Si and Mg2Si layer were 1017, and 1016 cm−3, respectively, the Mg2Si/Si heterojunction PD could obtain optimal photoelectric properties. Under these conditions, the maximum EQE was 70.68% at 800 nm, the maximum responsivity was 0.51 A/W at 1000 nm, the minimum NEP was 7.07 × 10−11 WHz–1/2 at 1000 nm, the maximum detectivity was 1.4 × 1010 Jones at 1000 nm, and the maximum on/off ratio was 141.45 at 1000 nm. The simulation and optimization result also showed that the Mg2Si/Si heterojunction PD could be used for visible and SWIR photodetection in the wavelength range from 400 to 1500 nm. The results also provide technical support for the future preparation of eco-friendly heterojunction photodetectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []