Quantitative Reconstruction of Polychromatic X-ray Fluorescence Computed Tomography Using Transmission Tomography.

2021 
Through measuring the intensity of the fluorescence X-rays emitted by the elements of interest, X-ray fluorescence computed tomography (XFCT) is capable of mapping the elemental distribution inside an object without destructively sectioning it. With the recent advances in XFCT utilizing polychromatic microfocus X-ray sources, it is expected that the popularity of such imaging modality will rise further. However, XFCT suffers from self-absorption effects, which make it challenging to reconstruct the elemental distribution inside the sample accurately. For this reason, polychromatic XFCT is mainly used to retrieve the distribution of elements with a relatively high atomic number (Z) when compared to the matrix of the sample. To enable the quantitative reconstruction of trace and low Z elements with polychromatic XFCT, a novel reconstruction method has been proposed in this manuscript. Through examining the proposed method on both simulation data and experimental data, its capacity on retrieving the density distribution of relatively low Z elements has been confirmed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []