IFN-β rescues neurodegeneration by regulating mitochondrial fission via STAT5, PGAM5, and Drp1.

2021 
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource-demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN-β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN-β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN-β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria-endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN-β in the Ifnb-/- model of Parkinson disease (PD) disrupts STAT5-PGAM5-Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN-β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN-β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622 Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    3
    Citations
    NaN
    KQI
    []