Electron-Coupled Double Proton Transfer in the Slr1694 BLUF Photoreceptor: A Multireference Electronic Structure Study

2019 
Photoreceptor proteins control vital cellular responses to light. The photocycle of the Slr1694 blue light using flavin photoreceptor is initiated by photoexcitation to a locally excited state within the flavin, followed by electron transfer from Tyr8 to the flavin and a proton relay from Tyr8 to the flavin via an intervening glutamine. Herein, the two-dimensional excited state potential energy surfaces associated with this double proton-transfer reaction are computed using the complete active space self-consistent-field method and multiconfigurational perturbation theory, including the protein and solvent environment with electrostatic embedding. The double proton-transfer reaction was found to be energetically unfavorable in the ground state and locally excited state but energetically favorable in the charge-transfer state corresponding to electron transfer from Tyr8 to the flavin. These results indicate that the proton-coupled electron transfer process is sequential, with electron transfer preceding do...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    12
    Citations
    NaN
    KQI
    []