Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand

2021 
Abstract In contrast to heterogeneous network frameworks (e.g., covalent organic frameworks and metal-organic frameworks) and porous organic polymers, porous organic cages (POCs) are soluble molecules in common organic solvents that provide significant potential for homogeneous catalysis. Herein, we report a triphenylphosphine-derived quasi-porous organic cage (denoted as POC-DICP) as an efficient organic molecular cage ligand for Rh/PPh3 system-catalyzed homogeneous hydroformylation reactions. POC-DICP not only displays enhanced hydroformylation selectivity (aldehyde selectivity as high as 97% and a linear-to-branch ratio as high as 1.89) but can also be recovered and reused via a simple precipitation method in homogeneous reaction systems. We speculate that the reason for the high activity and good selectivity is the favorable geometry (cone angle = 123.88°) and electronic effect (P site is relatively electron-deficient) of POC-DICP, which were also demonstrated by density functional theory calculations and X-ray absorption fine-structure characterization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    1
    Citations
    NaN
    KQI
    []