Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils

2019 
Abstract Heavy metals (HMs) in lake sediments have aroused long-term attention due to their persistent threat to the lake ecosystems. Study into the pollution characteristics and potential sources of HMs in lakes, especially those heavily influenced by human activities, can give some insights to prevent and control the environmental risks of HMs. Lake Tai is the China's third largest freshwater lake but has been a drastic example of water pollution in recent decades. Here, we systematically investigated the characterization of pollution, risk and sources of HMs in the sediments of Lake Tai and its surrounding soils using several methods and tools. Specifically, a total of 46 sediments and 578 soils were collected from the study area, and geochemical approaches (geo-accumulation index and enrichment factor) and pollution indexes were jointly used to reveal the contamination characteristics of HMs. Meanwhile, the potential ecological risk index and probabilistic model of health risk assessment were employed to understand the environmental risk of HMs. Further, absolute principle component score-multiple linear regression and positive matrix factorization models were comparatively applied to apportion the sources of HMs. Results showed that various metals including Cd, Cr, As, Hg, Pb, and Cu appeared contamination level in varying degrees both in the sediments and soils. In particular, Cd, As and Hg were identified as the significant contaminants and presented moderate ecological risk. As a whole, the health risk levels of metals were acceptable. Source apportionment suggested that industrial discharge, agricultural activities, atmospheric deposition and natural source were the potential origins of HMs in this area. Among them, anthropogenic activities were the largest dominator of HMs with contribution of >75%. The study will advance our knowledge on HMs in lake and its surrounding soils and provide reference for policy maker to design migration strategies for protecting the lake ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    37
    Citations
    NaN
    KQI
    []