Insights into population behavior during the COVID-19 pandemic from cell phone mobility data and manifold learning

2021 
Understanding the complex interplay between human behavior, disease transmission and non-pharmaceutical interventions during the COVID-19 pandemic could provide valuable insights with which to focus future public health efforts. Cell phone mobility data offer a modern measurement instrument to investigate human mobility and behavior at an unprecedented scale. We investigate aggregated and anonymized mobility data, which measure how populations at the census-block-group geographic scale stayed at home in California, Georgia, Texas and Washington from the beginning of the pandemic. Using manifold learning techniques, we show that a low-dimensional embedding enables the identification of patterns of mobility behavior that align with stay-at-home orders, correlate with socioeconomic factors, cluster geographically, reveal subpopulations that probably migrated out of urban areas and, importantly, link to COVID-19 case counts. The analysis and approach provide local epidemiologists a framework for interpreting mobility data and behavior to inform policy makers’ decision-making aimed at curbing the spread of COVID-19. Combining human mobility data and nonlinear mathematical analysis techniques, this study offers insights into the interplay between human behavior, disease transmission and non-pharmaceutical interventions during the COVID-19 pandemic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []