Immune and xenobiotic responses of glutathione S-Transferase theta (GST-θ) from marine invertebrate disk abalone (Haliotis discus discus): With molecular characterization and functional analysis

2019 
Abstract Representing a multifunctional complex group of proteins, glutathione S- transferases (GSTs) play a major role in the phase II detoxification process in a wide range of organisms. This study focused on the potential detoxification ability of disk abalone ( Haliotis discus discus ) GST theta ( AbGST-θ ) under different stress conditions with special reference to post immune challenges. Characterization of AbGST-θ revealed with 226 amino acids, 26.6 kDa of predicted molecular mass and 8.9 of theoretical isoelectric point. As illustrated in the multiple sequence alignment, eight glutathione binding sites (G-sites) and ten substrate binding sites (H-sites) were identified in well-distinct N-terminal and C-terminal domains of AbGST-θ, respectively. AbGST-θ exhibited its highest sequence identity with Mizuhopecten yessoensis (59.1%) and the phylogenetic tree clearly positioned AbGST-θ with pre-defined GST-θ molluscan homologues. The AbGST-θ was highly expressed in the digestive tract of un-challenged abalones. Upon administering the challenge experiment, AbGST-θ showed significant modulations in their transcriptional levels depending on the time and the tissue type. The optimum temperature was 37 °C and optimum pH was 7.5 for AbGST-θ. The determined enzyme kinetic parameters of AbGST-θ showed low affinity towards 1-Chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH) as substrates. Nonetheless, with Cibacron blue IC 50 (half maximal inhibitory concentration) was calculated to be 0.08 μM while observing 100% inhibition with 100 μM. Furthermore, AbGST-θ resulted in significant protection ability towards H 2 O 2 , CdCl 2, and ZnCl 2 in the disk diffusion assay. Collectively, this study provides evidences for the detoxification ability and the immunological host defensive capability of AbGST-θ in disk abalone .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    8
    Citations
    NaN
    KQI
    []