Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance.

2015 
Abstract Blocking CD40-CD40L costimulatory signals induces transplantation tolerance. Although B-cell depletion prevents alloantibody formation, nonhumoral functions of B cells in tolerance have not been well characterized. We investigated whether specific subsets of B cell or B cell-derived interleukin (IL)-10 contribute to tolerance. Wild type C57BL/6, or B cell-specific interleukin (IL)-10 (CD19-Cre::IL-10) mice, received vascularized BALB/c cardiac allografts. BALB/c donor-specific splenocyte transfusion and anti-CD40L monoclonal antibody were used as tolerogen. B cells were depleted with antimouse CD20 monoclonal antibody. Various B-cell subsets were purified and characterized by flow cytometry, reverse transcription polymerase chain reaction, and adoptive transfer. B-cell depletion prevented costimulatory blockade-induced allogeneic tolerance. Costimulatory blockade increased IL-10 in marginal zone precursor (MZP) B cells, but not other subsets. In particular, costimulatory blockade did not change other previously defined regulatory B-cell subsets (Breg), including CD5CD1d Breg or expression of TIM1 or TIM4 on these Breg or other Breg cell subsets. Costimulatory blockade also induced IL-21R expression in MZP B cells, and IL-21R MZP B cells expressed even more IL-10. B-cell depletion or IL-10 deficiency in B cells prevented tolerance in a cardiac allograft model, resulting in rapid acute cardiac allograft rejection. Adoptive transfer of wild type MZP B cells but not other subsets to B cell-specific IL-10 deficient mice prevented graft rejection. CD40 costimulatory blockade induces MZP B cell IL-10 which is necessary for tolerance. These observations have implications for understanding tolerance induction and how B cell depletion may prevent tolerance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    28
    Citations
    NaN
    KQI
    []