Electron-hole balance and the anomalous pressure-dependent superconductivity in black phosphorus

2017 
The influence of carrier type on superconductivity has been an important issue for understanding both conventional and unconventional superconductors [1-7]. For elements that superconduct, it is known that hole-carriers govern the superconductivity for transition and main group metals [8-10]. The role of hole-carriers in elements that are not normally conducting but can be converted to superconductors, however, remains unclear due to the lack of experimental data. Here we report the first in-situ high pressure Hall effect measurements on single crystal black phosphorus, measured up to ~ 50 GPa, and find a correlation between the Hall coefficient and the superconducting transition temperature (TC). Our results reveal that hole-carriers play a vital role in developing superconductivity and enhancing TC. Importantly, we also find a Lifshitz transition in the high-pressure cubic phase at ~17.2GPa, which uncovers the origin of a puzzling valley in the superconducting TC-pressure phase diagram. These results offer insight into the role of hole-carriers in developing superconductivity in simple semiconducting solids under pressure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    35
    Citations
    NaN
    KQI
    []