Simultaneous measurement of magnetic field and temperature based on two anti-resonant modes in hollow core Bragg fiber.

2021 
A simple and compact magnetic field and temperature dual-parameter sensor is proposed, which is based on a sandwich structure consisting of a section of hollow core Bragg fiber (HCBF) filled with magnetic fluid (MF) and two sections of single-mode fiber (SMF). The corresponding relationship between the resonant dip with different periods in the transmission spectrum and specific anti-resonant (AR) mode in the HCBF is determined. The resonant dips based on different AR modes shift differently when the magnetic field intensity and temperature change. Then, the simultaneous measurement of the magnetic field intensity and temperature can be achieved by utilizing a cross matrix. The experimental results show that the maximum magnetic field sensitivity in the range of 0-12 mT is 86.43 pm/mT, and the maximum temperature sensitivity in the range of 20-60 ℃ is 17.8 pm/℃. The proposed sensor has the advantages of compact structure, easy fabrication and low cost, thus, it has great potential applications in the field of simultaneous sensing of magnetic field intensity and temperature in complex environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []