Serrated chip formation mechanism analysis for machining of titanium alloy Ti-6Al-4V based on thermal property

2018 
Based on the software ABAQUS/Explicit, a finite element (FE) model for orthogonal cutting was established. The FE model was validated by comparing the cutting forces and serrated degree of chips obtained by orthogonal cutting experiments under the cutting speeds 40, 80, 120, and 160 m/min. Based on the developed FE model, the influence of thermal conductivity on the degree of chip segmentation and the adiabatic shear localization were investigated. Furthermore, the plot contours on undeformed shape of cutting simulation was used to investigate the temperature distribution, and the high temperature zone was identified, which can help enhance the understanding of the serrated chip formation. Finally, cracks located in the adjacent segments of chips were observed. The results show that with the increase in thermal conductivity, the degree of adiabatic shear decreases. It can be concluded that the poor thermal conduction performance should be primarily responsible for the formation of serrated chips during machining Ti-6Al-4V alloy. Due to the high temperature at contact surface between cutting tool and workpiece, the increasing of cutting speed facilitates the formation of serrated chips during machining.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    18
    Citations
    NaN
    KQI
    []