Nanometer-scale cavities for mid-infrared light based on graphene plasmons

2021 
Acoustic-graphene-plasmons (AGPs) are highly confined electromagnetic modes, which carry extreme momentum and low loss in the Mid-infrared (MIR) to Terahertz (THz) spectra. They are therefore enablers of extremely strong light-matter interactions at these long wavelengths. However, owing to their large momentum they are also challenging to excite and detect. Here, we demonstrate a new way to excite AGPs that are confined to nanometric-scale cavities directly from the far-field, via localized graphene-plasmon-magnetic-resonators (GPMRs). This approach enables the efficient excitation of single AGP cavities, which are able to confine MIR light to record-breaking ultra-small mode-volumes, which are over a billion times smaller than their free-space volume.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []