Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states assisted by single-sided quantum-dot-cavity systems.

2018 
Hyperentangled Bell-state analysis (HBSA) is critical for high-capacity quantum communication. Here we design two effective schemes for error-heralded deterministic generation and self-assisted complete analysis of hyperentangled Bell states for two-photon systems in both the polarization and spatial-mode degrees of freedom, assisted by single-sided quantum-dot-cavity systems. We construct an error-heralded block with a singly charged quantum dot inside a single-sided optical microcavity, two circular polarization beam splitters, one half-wave plate, and one single-photon detector, in which the errors due to imperfect interactions between photons and quantum dot systems can be heralded. With this error-heralded block, the fidelity of our two schemes for hyperentangled Bell-state generation and complete HBSA can reach unit one. What interesting is that by using the measured spatial-mode state to assist the analysis of the polarization state, our complete HBSA scheme works in a self-assisted way, which greatly simplifies the analysis process and largely relaxes the requirements on nonlinearities. These advantages make our schemes much easier to implement experimentally, and have more practical applications in long-distance high-capacity quantum communication.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []