Aplicación de la topología molecular a la predicción de la actividad antimalárica de análogos de la 4-anilinoquinolina

2021 
Malaria is a parasitic disease caused by the Plasmodium protozoa and transmitted by vector of the genus Anopheles. In 2019, this disease claimed the lives of more than 400.000 people, of which 94 % are concentrated in the African region. One of the main problems with malaria control is parasite resistance to the different drugs that exist, which is why it is necessary to develop effective antimalarial alternatives. In this study, molecular topology was applied to 4-anilinoquinoline analogs with proliferation inhibitory activity of 3 Plasmodium falciparum strains, one chloroquine sensitive (D6) and two chloroquine resistant (W2 and C235); in order to develop a quantitative structure-activity (QSAR) model to predict the activity of the compounds against each of them. Using linear discriminant analysis, three functions were selected that correctly classified 87 % of the compounds analyzed in strain D6, W2 and C235, respectively. The leave some out test was carried out to validate this model. Finally, the model was applied to search for new antimalarial compounds potentially active against all three strains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []