Impact limits of partitioning and transmutation scenarios on the radiotoxicity of actinides in radioactive waste

2003 
The used fuel discharged from nuclear power plants constitutes the main contribution to nuclear waste in countries which do not undertake reprocessing. As such, its disposal requires isolation from the biosphere in stable deep geological formations for long periods of time (some hundred thousand years) until its radioactivity decreases through the process of radioactive decay. Ways for significantly reducing the volumes and radiotoxicities of the waste and to shorten the very long times for which the waste must be stored safely are being investigated. This is the motivation behind the partitioning and transmutation (P&T) activities worldwide. This paper addresses the potential impact of P&T on the long-term disposal of nuclaer waste. In particular, it evaluates how realistic P&T scenarios can lead to a reduction in the time required for the waste to be stored safely. The calculations have been done independently by three research groups: ITU and FZK in Germany, and by the CEA in France.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    139
    Citations
    NaN
    KQI
    []