Canagliflozin inhibits p-gp function and early autophagy and improves the sensitivity to the antitumor effect of doxorubicin

2020 
Abstract Cancer easily induces resistance to most chemotherapy drugs. In this study, we investigated the combination cytotoxic and antitumor effects of canagliflozin (CAN) and doxorubicin (DOX) in vitro and in vivo. CAN significantly increased the cytotoxicity of DOX in HepG2, HepG2-ADR (adriamycin or doxorubicin-resistant) and MCF7 cells. CAN significantly promoted the intracellular uptake of DOX in HepG2 cells. CAN also reduced the p-gp level in HepG2 cells. The function of p-gp required ATP, but CAN significantly reduced the intracellular ATP level. CAN might inhibit the function of p-gp, increase the intracellular DOX concentration and contribute to an enhanced cytotoxic activity. Autophagy plays a protective role in chemotherapy-induced cell survival. However, CAN significantly inhibited DOX-induced autophagy in HepG2 cells, and the mechanism appeared to be mediated by promoting ULK1 phosphorylation. The downregulation of P-glycoprotein (P-gp) may be associated with protein degradation but is independent of the autophagy pathway. Furthermore, in HepG2-xenograft BALB/c naked mice, CAN significantly increased the antitumor effect of DOX. This study is the first to report that a classical antidiabetic drug, CAN improved the sensitivity to the antitumor effect of DOX, and the potential molecular mechanisms of CAN may involve the inhibition of P-gp function and the autophagy pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    12
    Citations
    NaN
    KQI
    []