Isolation of extracellular vesicles with combined enrichment methods

2021 
Abstract Extracellular vesicles (EVs) are currently of tremendous interest in many research disciplines and EVs have potential for development of EV diagnostics or therapeutics. Most well-known single EV isolation methods have their particular advantages and disadvantages in terms of EV purity and EV yield. Combining EV isolation methods provides additional potential to improve the efficacy of both purity and yield. This review assesses the contribution and efficacy of using combined EV isolation methods by performing a two-step systematic literature analysis from all papers applying EV isolation in the year 2019. This resulted in an overview of the various methods being applied for EV isolations. A second database was generated for all studies within the first database that fairly compared multiple EV isolation methods by determining both EV purity and EV yield after isolation. From these databases it is shown that the most used EV isolation methods are not per definition the best methods based on EV purity or EV yield, indicating that more factors play a role in the choice which EV isolation method to choose than only the efficacy of the method. From the included studies it is shown that ∼60% of all the included EV isolations were performed with combined EV isolation methods. The majority of EV isolations were performed with differential ultracentrifugation alone or in combination with differential ultrafiltration. When efficacy of EV isolation methods was determined in terms of EV purity and EV yield, combined EV isolation methods clearly outperformed single EV isolation methods, regardless of the type of starting material used. A recommended starting point would be the use of size-exclusion chromatography since this method, especially when combined with low-speed centrifugation, resulted in the highest EV purity, while still providing a reasonable EV yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    8
    Citations
    NaN
    KQI
    []