Depletion of CPEB1 protects against oxidized LDL-induced endothelial apoptosis and inflammation though SIRT1/LOX-1 signalling pathway

2019 
Abstract Atherosclerosis (AS) is a chronic inflammatory disease that results from Oxidized low-density lipoprotein (Ox-LDL) induced endothelial dysfunction. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) is closely related to the development of epithelial cells, but the role of CPEB1 in AS remains unknown. The RNA and protein levels of CPEB1 expression are increased by Ox-LDL exposure, which is abrogated by c-Jun amino-terminal kinase (JNK) inhibitor SP600125. CPEB1 small interfering RNA (siRNA) suppressed the oxidative stress, inflammation, and apoptosis. Furthermore, CPEB1 siRNA enhanced the sirtuin 1 (SIRT1) transcription levels in Ox-LDL-treated HUVECs. Co-Immunoprecipitation (Co-IP) assay showed that CPEB1 siRNA declined the ubiquitination of SIRT1, and SIRT1 siRNA enhanced the Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), which were decreased by CPEB1 siRNA. In addition, LOX-1 and SIRT1 attenuated the protection of SIRT1 siRNA on Ox-LDL-induced oxidative stress. Therefore, our study revealed that CPEB1 depletion might play an anti-inflammatory and antiapoptotic role in Ox-LDL-induced apoptosis and inflammation though SIRT1/LOX-1 signalling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    4
    Citations
    NaN
    KQI
    []