Intercorrelated Relationship Between the Thermoelectric Performance and Mechanical Reliability of Mg2Si-Reduced Graphene Oxide Nanocomposites

2020 
We fabricated Mg2Si-based thermoelectric nanocomposites with reduced graphene oxide using ultrasonic-based wet chemical pulverizing-mixing and spark plasma sintering to improve the trade-off relationship between thermoelectric properties and mechanical reliability. The dependence of thermoelectric properties and mechanical reliability on the nanophase morphologies has been systemically investigated, demonstrating the fracture toughness of the nanocomposite with thin reduced graphene oxide significantly increased. Moreover, the introduction of the few-layered reduced graphene oxide with high interface density was more effective in improving the trade-off relationship. This result suggests that an in-depth research on the dependence of the thermoelectric properties and mechanical reliability on the intrinsic properties of the nanophases is required to prepare efficient thermoelectric nanocomposites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    2
    Citations
    NaN
    KQI
    []