Two unrelated patients with MRE11A mutations and Nijmegen breakage syndrome-like severe microcephaly

2011 
Abstract MRE11 and NBS1 function together as components of a MRE11/RAD50/NBS1 protein complex, however deficiency of either protein does not result in the same clinical features. Mutations in the NBN gene underlie Nijmegen breakage syndrome (NBS), a chromosomal instability syndrome characterized by microcephaly, bird-like faces, growth and mental retardation, and cellular radiosensitivity. Additionally, mutations in the MRE11A gene are known to lead to an ataxiatelangiectasia-like disorder (ATLD), a late-onset, slowly progressive variant of ataxiatelangiectasia without microcephaly. Here we describe two unrelated patients with NBS-like severe microcephaly (head circumference −10.2 SD and −12.8 SD) and mutations in the MRE11A gene. Both patients were compound heterozygotes for a truncating or missense mutation and carried a translationally silent mutation. The truncating and missense mutations were assumed to be functionally debilitating. The translationally silent mutation common to both patients had an effect on splicing efficiency resulting in reduced but normal MRE11 protein. Their levels of radiation-induced activation of ATM were higher than those in ATLD cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    43
    Citations
    NaN
    KQI
    []