Large-scale data analytics for resilient recovery services from power failures

2021 
Summary Massive power failures are induced frequently by natural disasters. A fundamental challenge is how recovery can be resilient to the increasing severity of disruptions in a changing climate. We conduct a large-scale study on recovery from 169 failure events at two operational distribution grids in the states of New York and Massachusetts. Guided by unsupervised learning from non-stationary data, our analysis finds that under the widely adopted prioritization policy favoring large failures, recovery exhibits a scaling property where a majority ( ∼ 90%) of customers recovers in a small fraction ( ∼ 10%) of total downtime. However, recovery degrades with the severity of disruptions: large failures that cannot recover rapidly increase by ∼ 30% from the moderate to extreme events. Prolonged small failures dominate entire recovery processes. Further, our analysis demonstrates the promise of mitigating the degradation by enhancing recovery of a small fraction of large failures through distributed generation and storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []