PriLock: Citizen-protecting distributed epidemic tracing.

2020 
Contact tracing is an important instrument for national health services to fight epidemics. As part of the COVID-19 situation, many proposals have been made for scaling up contract tracing capacities with the help of smartphone applications, an important but highly critical endeavor due to the privacy risks involved in such solutions. Extending our previously expressed concern, we clearly articulate in this article, the functional and non-functional requirements that any solution has to meet, when striving to serve, not mere collections of individuals, but the whole of a nation, as required in face of such potentially dangerous epidemics. We present a critical information infrastructure, PriLock, a fully-open preliminary architecture proposal and design draft for privacy preserving contact tracing, which we believe can be constructed in a way to fulfill the former requirements. Our architecture leverages the existing regulated mobile communication infrastructure and builds upon the concept of "checks and balances", requiring a majority of independent players to agree to effect any operation on it, thus preventing abuse of the highly sensitive information that must be collected and processed for efficient contact tracing. This is enforced with a largely decentralised layout and highly resilient state-of-the-art technology, which we explain in the paper, finishing by giving a security, dependability and resilience analysis, showing how it meets the defined requirements, even while the infrastructure is under attack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    4
    Citations
    NaN
    KQI
    []