Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel

2012 
Three morphologies of martensite in dual-phase microstructure of 0.2% C steel were obtained by different heat treatment cycles. These morphologies consisting of grain boundary growth, scattered laths, and bulk form of martensite have their distinct patterns of distribution in the matrix (ferrite). In tensile testing martensite particles with these distributions behaved differently. A reasonable work hardening was gained initially during plastic deformation of the specimens. The control on ductility was found to depend on the alignment of martensite particles along the tensile axes. The increased surface area contact of martensite particles with ferrite, in grain boundary growth and scattered lath morphologies, facilitated stress transfer from ductile to hard phase. The ductility in the later part of deformation was dependent on the density of microvoids in the necked region. The microvoids are formed mostly by de-cohesion of martensite particles at the interface. The fracture of martensite particles is less prominent in the process of microvoid formation which predicts high strength of martensite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    49
    Citations
    NaN
    KQI
    []