Research on emission characteristics of hydrogen fuel internal combustion engine based on more detailed mechanism

2019 
Abstract A CFD simulation model with simplified chemical reaction mechanism was built based on CONVERGE software to study the in-cylinder combustion progress and NO generation mechanism of hydrogen fueled internal combustion engine (HICE). Simulation results show that the in-cylinder combustion progress experiences the ellipsoidal flame stable propagation stage and the rapid turbulent combustion stage. At the end of rapid turbulent combustion the OH concentration decreases quickly, the peak temperature and maximum NO mass appear at that time, and then the in-cylinder temperature and NO mass decrease step by step. The final emission depends on the peak temperature and NO decomposition time of high-temperature regions. The higher the maximum temperature, the greater the NO peak mass; and the faster the temperature drop, the less the NO decomposes. Adoption of EGR can reduce the in-cylinder maximum temperature, and NO decomposes sufficiently at low speed, which in turn leads to lower NO emission of HICE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    6
    Citations
    NaN
    KQI
    []