Data bank of light backscattering matrices for atmospheric ice crystals of non-convex shape for wavelengths 0.355, 0.532, 1.064 μm

2021 
This paper presents the results of calculation and analyzes the light scattering matrix of random oriented ice particles of non-convex shape (hollow column) with cavity angles from 0 to 50 degrees for lidar wavelengths of 0.355, 0.532, and 1.064 microns and refractive indices of 1.3249, 1.3116, and 1.3004. The calculation was carried out within both physical and geometrical optics approximation methods for particle sizes varied from 10 to 100 microns. As a result, it is shown that differential scattering cross-section for non-convex shape (hollow column) demonstrates a power-law dependence on the particle size. However, the linear depolarization ratio has no simple dependence on particle size and is practically independent of wavelength for small particles (L<50μm). The linear depolarization ratio increases from 0.2 up to 0.5–0.8 with an increase of the cavity angle of the crystal. The elements of the light scattering matrix depending on scattering and cavity angle are given.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []