Denatured corona proteins mediate the intracellular bioactivities of nanoparticles via the unfolded protein response

2021 
Abstract Biomolecular corona formed on nanoparticles (NPs) influences the latter's in vivo biological effects. Nanomaterials with different physicochemical properties exert similar adverse effects, such as cytotoxicity, suggesting the existence of ubiquitous signals during various corona formations that mediate common and fundamental cellular events. Here, we discover the involvement of the unfolded protein response (UPR) and recruited chaperones in the corona. Specially, heat shock protein 90 kDa α class B member 1 (Hsp90ab1) is abundantly enriched in the corona, accompanied by substantial aggregation of misfolded protein on particles intracellularly. Further analysis reveals the particulate matter 2.5 (PM2.5) and metal-containing particles are more capable of denaturing proteins. The recruited Hsp90ab1 activates diverse NPs' pathological behaviour by heat stress response (HSR), which were significantly reversed by geldanamycin (GA), the inhibitor of Hsp90ab1. Murine lung inflammation induced by PM2.5 and iron oxide NPs (Fe3O4NPs) is suppressed by GA, highlighting that Hsp90ab1-mediated UPR is a potential target for the treatment of environmental pollution-related illnesses. Based on our findings, the UPR and Hsp90ab1 presented in the corona of particles initiate fundamental intracellular reactions that lead to common pathological outcomes, which may provide new insights for understanding nanotoxicity and designing therapeutic approaches for diseases associated with environmental pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []