Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors

2017 
The conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine—both covalent retaining β-glucosidase inhibitors—we postulated that the corresponding carba “cyclopropyl” analogue would be a potent retaining β-glucosidase inhibitor for those enzymes reacting through the 4H3 transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the 4H3 conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)carboxamide moiety, proved to be a potent inhibitor (Ki = 8.2 nM) of the Thermotoga maritima TmGH1 β-glucosidase. 3-D structural analysis and comparison with unreacted epoxides show that this compound indeed binds in the 4H3 conformation, suggesting that conformational strain induced through a cyclopropyl unit may add to the armory of tight-binding inhibitor designs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    17
    Citations
    NaN
    KQI
    []