Novel brominated flame retardants in West Antarctic atmosphere (2011–2018): Temporal trends, sources and chiral signature

2020 
Abstract Novel brominated flame retardants (NBFRs) were comprehensively investigated in both gaseous and particle phase samples collected using a high-volume active air sampler (HV-AAS) at the Chinese Great Wall Station in King George Island, West Antarctica from 2011 to 2018. The concentrations of ∑12NBFRs ranged from 0.27 to 3.0 pg m−3, with a mean value of 1.1 ± 0.50 pg m−3 and the levels showed a slightly increasing trend over the eight years. Decabromodiphenyl ethane (DBDPE) was the predominant NBFR with a relative contribution of 50% on average. Most of the studied NBFRs tended to distribute in gaseous phase with an average ratio of 72 ± 16% while NBFRs with higher log KOA values had higher proportions in particle phase. The gas/particle partitioning models were employed to evaluate the environmental behavior of NBFRs. Compared to the equilibrium-state-based model, the steady-state-based model performed much better to predict the gas/particle partitioning of NBFRs in the West Antarctic atmosphere. Additionally, no temperature dependence was found for NBFRs except rac-(1R,2R,5R,6R)-1,2,5,6-tetrabromocyclooctane (β-TBCO). The annual mean concentrations of ∑12NBFRs showed a significantly negative correlation with the frequency of east-southeast (ESE, 112.5°) wind and calm wind (~0 m s−1) (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    14
    Citations
    NaN
    KQI
    []