An Optical and Temperature Assisted CMOS ISFET Sensor Array for Robust E. Coli Detection.

2021 
Both bacterial viability and concentration are significant metrics for bacterial detection. Existing miniaturized and cost-effective single-mode sensor, pH or optical, can only be skilled at detecting single information viability or concentration. This paper presents an inverter-based CMOS ion-sensitive-field-effect-transistor (ISFET) sensor array, featuring bacterial pH detection which is an indicator of viability. The proposed design realizes pH detection using the native passivation layer of CMOS process as a sensing layer and configuring an inverter-based front-end as a capacitive feedback amplifier. This sensor array is assisted by temperature sensing and optical detection which reveals bacterial concentration. The optical detection is enabled using the leakage current of a reset switch as a response to a light source. While in reset mode, the inverter-based amplifier works as a temperature sensor that could help to reduce temperature influences on pH and optical detection. All the functionalities are realized using one single inverter-based amplifier, resulting in a compact pixel structure and largely relaxed design complexity for the sensor system. Fabricated in 0.18 $\mu$ m standard CMOS process, the proposed CMOS sensor array system achieves an amplified pH sensitivity of 221 mV/pH, an improved sensor resolution of 0.03 pH through systematic noise optimization, a linear optical response, and a maximum temperature error of 0.69 $^{\circ }$ C. The sensing capabilities of the proposed design are demonstrated through on-chip Escherichia coli (E. coli) detection. This study may be extended to a rapid and cost-effective platform that renders multiple information of bacterial samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []