Direct visualization of an antidepressant analog using surface-enhanced Raman scattering in the brain

2020 
Detailed spatial information of low-molecular-weight compounds distribution, especially in the brain, is crucial towards understanding their mechanism of actions. Imaging techniques that can directly visualize drugs in the brain at a high resolution will complement existing tools for drug distribution analysis. Here, we performed surface-enhanced Raman scattering (SERS) imaging using a bioorthogonal alkyne tag to visualize drugs directly in situ at a high resolution. Focusing on the selective serotonin reuptake inhibitor S-citalopram (S-Cit), which possesses a nitrile group, we substituted an alkynyl group into its structure and synthesized alkynylated S-Cit (Alk-S-Cit). The brain transitivity and the serotonin reuptake inhibition of Alk-S-Cit were not significantly different as compared to S-Cit. Alk-S-Cit was visualized in the coronal mouse brain section using SERS imaging with silver nanoparticles. Further, SERS imaging combined with fluorescence microscopy allowed Alk-S-Cit to be visualized in the adjacent neuronal membranes, and in the brain vessel and parenchyma. Thus, our multimodal imaging technique is an effective method for detecting low-molecular-weight compounds in their original tissue environment and can potentially offer additional information regarding the precise spatial distribution of such drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    4
    Citations
    NaN
    KQI
    []