Conditions for the existence of zero-determinant strategies under observation errors in repeated games.

2021 
Repeated games are useful models to analyze long term interactions of living species and complex social phenomena. Zero-determinant (ZD) strategies in repeated games discovered by Press and Dyson in 2012 enforce a linear payoff relationship between a focal player and the opponent. This linear relationship can be set arbitrarily by a ZD player. Hence, a subclass of ZD strategies can fix the opponent's expected payoff and another subclass of the strategies can exceed the opponent for the expected payoff. Since this discovery, theories for ZD strategies are extended to cope with various natural situations. It is especially important to consider the theory of ZD strategies for repeated games with a discount factor and observation errors because it allows the theory to be applicable in the real world. Recent studies revealed their existence of ZD strategies even in repeated games with both factors. However, the conditions for the existence has not been sufficiently analyzed. Here, we mathematically analyzed the conditions in repeated games with both factors. First, we derived the thresholds of a discount factor and observation errors which ensure the existence of Equalizer and positively correlated ZD (pcZD) strategies, which are well-known subclasses of ZD strategies. We found that ZD strategies exist only when a discount factor remains high as the error rates increase. Next, we derived the conditions for the expected payoff of the opponent enforced by Equalizer as well as the conditions for the slope and base line payoff of linear lines enforced by pcZD. As a result, we found that, as error rates increase or a discount factor decreases, the conditions for the linear line that Equalizer or pcZD can enforce become strict.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    2
    Citations
    NaN
    KQI
    []