Potential Biological Role of Transforming Growth Factor-β1 in Human Congenital Kidney Malformations

2000 
Transformations between epithelial and mesenchymal cells are widespread during normal development and adult disease, and transforming growth factor-β1 (TGF-β1) has been implicated in some of these phenotypic switches. Dysplastic kidneys are a common cause of chronic kidney failure in young children and result from perturbed epithelial-mesenchymal interactions. In this study, we found that components of the TGF-β1 axis were expressed in these malformations: TGF-β1 mRNA and protein were up-regulated in dysplastic epithelia and surrounding mesenchymal cells, whereas TGF-β receptors I and II were expressed in aberrant epithelia. We generated a dysplastic kidney epithelial-like cell line that expressed cytokeratin, ZO1, and MET, and found that exogenous TGF-β1 inhibited proliferation and decreased expression of PAX2 and BCL2, molecules characterizing dysplastic tubules in vivo. Furthermore, addition of TGF-β1 specifically induced morphological changes compatible with a shift to a mesenchymal phenotype, accompanied by loss of ZO1 at cell borders and up-regulation of the mesenchymal markers α-smooth muscle actin and fibronectin. The descriptive and functional data presented in this report potentially implicate TGF-β1 in the pathobiology of dysplastic kidneys and our results provide preliminary evidence that an epithelial-to-mesenchymal phenotypic switch may be implicated in a clinically important developmental aberration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    51
    Citations
    NaN
    KQI
    []