Optimal control applied to a generalized Michaelis-Menten model of CML therapy

2017 
We generalize a previously-studied model for chronic myeloid leu-kemia (CML) [ 13 , 10 ] by incorporating a differential equation which has a Michaelis-Menten model as the steady-state solution to the dynamics. We use this more general non-steady-state formulation to represent the effects of various therapies on patients with CML and apply optimal control to compute regimens with the best outcomes. The advantage of using this more general differential equation formulation is to reduce nonlinearities in the model, which enables an analysis of the optimal control problem using Lie-algebraic computations. We show both the theoretical analysis for the problem and give graphs that represent numerically-computed optimal combination regimens for treating the disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    4
    Citations
    NaN
    KQI
    []