Characterizing qubit channels in the context of quantum teleportation
2021
We consider a scenario where a party, say, Alice prepares a pure two-qubit (either maximally entangled or non-maximally entangled) state and sends one half of this state to another distant party, say, Bob through a qubit (either unital or non-unital) channel. Finally, the shared state is used as a teleportation channel. In this scenario, we focus on characterizing the set of qubit channels in terms of the final state's efficacy as a resource of quantum teleportation (QT) in terms of maximal average fidelity and fidelity deviation (fluctuation in fidelity values over the input states). Importantly, we point out the existence of a subset of qubit channels for which the final state becomes useful for universal QT (having maximal average fidelity strictly greater than the classical bound and having zero fidelity deviation) when the initially prepared state is either useful for universal QT (i.e., for maximally entangled state) or not useful for universal QT (i.e., for a subset of non-maximally entangled pure states). Interestingly, in the latter case, we show that non-unital channels (dissipative interactions) are more effective than unital channels (non-dissipative interactions) in producing useful states for universal QT from non-maximally entangled pure states.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
1
Citations
NaN
KQI