Passivation of Nickel Vacancy Defects in Nickel Oxide Solar Cells by Targeted Atomic Deposition of Boron

2016 
Localized trap states, which are deleterious to the performance of many solar-energy materials, often originate from the under-coordinated bonding associated with defects. Recently, the concept of targeted atomic deposition (TAD) was introduced as a process that permits the passivation of trap states using a vapor-phase precursor that selectively reacts with only the surface defect sites. Here, we demonstrate the passivation of nickel oxide (NiO) with the TAD process using diborane gas for selective, low-temperature deposition of boron (B) under continuous flow in a chemical vapor deposition (CVD) system. NiO is a ubiquitous cathode material used in dye-sensitized solar cells (DSSCs), organic photovoltaic devices, and organo-lead halide perovskite solar cells. The deposition of B at 100 °C is shown to follow first-order kinetics, exhibiting saturation at a B to Ni atomic ratio of ∼10%. Electrochemical measurements, combined with first-principles calculations, indicate that B passivates Ni vacancy defects ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    28
    Citations
    NaN
    KQI
    []