Strain release at the graphene-Ni(100) interface investigated by in-situ and operando scanning tunnelling microscopy

2020 
Abstract Interface strain can significantly influence the mechanical, electronic and magnetic properties of low-dimensional materials. Here we investigated by scanning tunneling microscopy how the stress introduced by a mismatched interface affects the structure of a growing graphene (Gr) layer on a Ni(100) surface in real time during the process. Strain release appears to be the main factor governing morphology, with the interplay of two simultaneous driving forces: on the one side the need to obtain two-dimensional best registry with the substrate, via formation of moire patterns, on the other side the requirement of optimal one-dimensional in-plane matching with the transforming nickel carbide layer, achieved by local rotation of the growing Gr flake. Our work suggests the possibility of tuning the local properties of two-dimensional films at the nanoscale through exploitation of strain at a one-dimensional interface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []