Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline

2011 
Human cancer cells are irradiated by laser-driven quasimonoenergetic protons. Laser pulse intensities at the 5×1019 W/cm2 level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels of up to 8 Gy, for which the single bunch dose rate is 1×107 Gy/s and the effective dose rate is 0.2 Gy/s for 1 Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be 1.20±0.11 using protons with a linear energy transfer of 17.1 keV/μm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    86
    Citations
    NaN
    KQI
    []