Study on the Stability of the Electrical Connection of High-Temperature Pressure Sensor Based on the Piezoresistive Effect of P-Type SiC.

2021 
In this study, a preparation method for the high-temperature pressure sensor based on the piezoresistive effect of p-type SiC is presented. The varistor with a positive trapezoidal shape was designed and etched innovatively to improve the contact stability between the metal and SiC varistor. Additionally, the excellent ohmic contact was formed by annealing at 950 °C between Ni/Al/Ni/Au and p-type SiC with a doping concentration of 1018cm−3. The aging sensor was tested for varistors in the air of 25 °C–600 °C. The resistance value of the varistors initially decreased and then increased with the increase of temperature and reached the minimum at ~450 °C. It could be calculated that the varistors at ~100 °C exhibited the maximum temperature coefficient of resistance (TCR) of ~−0.35%/°C. The above results indicated that the sensor had a stable electrical connection in the air environment of ≤600 °C. Finally, the encapsulated sensor was subjected to pressure/depressure tests at room temperature. The test results revealed that the sensor output sensitivity was approximately 1.09 mV/V/bar, which is better than other SiC pressure sensors. This study has a great significance for the test of mechanical parameters under the extreme environment of 600 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []