An HDG Method for Tangential Boundary Control of Stokes Equations I: High Regularity

2018 
We propose a hybridizable discontinuous Galerkin (HDG) method to approximate the solution of a tangential Dirichlet boundary control problem for the Stokes equations with an $ L^2 $ penalty on the boundary control. The contribution of this paper is twofold. First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain. The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary. Second, under certain assumptions on the domain and the target state, we prove a priori error estimates for the control for the HDG method. In the 2D case, our theoretical convergence rate for the control is superlinear and optimal with respect to the global regularity on the entire boundary. We present numerical experiments to demonstrate the performance of the HDG method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    2
    Citations
    NaN
    KQI
    []