8 Å structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex solved by cryo-EM and AI

2021 
As one of the largest protein complexes in eukaryotes, the nuclear pore complex (NPC) forms a conduit regulating nucleocytoplasmic transport. Here, we determined 8 [A] resolution cryo-electron microscopic (cryo-EM) structure of the cytoplasmic ring (CR) from the Xenopus laevis NPC. With the aid of AlphaFold2, we managed to build a most comprehensive and accurate pseudoatomic model of the CR to date, including the Y complexes and flanking components of Nup358, Nup214 complexes, Nup205 and Nup93. Comparing with previously reported CR model, the Y complex structure in our model exhibits much tighter interactions in the hub region mediated by -solenoid domain in Nup160 C-terminus. Five copies of Nup358 are identified in each CR subunit to provide rich interactions with other Nups in stem regions of Y complexes. Two copies of Nup214 complexes lay in a parallel pattern and attach to the short arm region of Y complexes towards the central channel of NPC. Besides, the structural details of two copies of Nup205 on the side of the short arm region and one copy of Nup93 on the stem region of Y complexes in each CR subunit are also revealed. These in-depth novel structural features represent a great advance in understanding the assembly of NPCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []