Engineering Ni/SiO2 catalysts for enhanced CO2 methanation

2021 
Abstract The CO2 methanation is an important process in coal-to-gas, power-to-gas and CO2 removal for spacecraft. Recently, metal-organic framework (MOF) derivatives have been demonstrated as high-performance catalysts for CO2 upgrading processes. However, due to the high costs and low stability of MOF derivatives, it still remains challenge for the development of alternative synthesis methods avoiding MOF precursors. In this work, we present the sol-gel method for loading Ni-MOF to silica support in two-steps. Upon modifying the procedure, a more simplified one-step sol-gel method has been developed. Furthermore, the obtained Ni/SiO2 catalyst still exhibits great catalytic performance with a CO2 conversion of 77.2% and considerable CH4 selectivity of ~100% during a stability test for 52 h under a low temperature of 310 °C and high GHSV of 20,000 mL·g−1·h−1. Therefore, this work provides a ground-breaking direct strategy for loading MOF derived catalysts, and might shed a light on the preparation of highly dispersed Ni/SiO2 catalyst.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    19
    Citations
    NaN
    KQI
    []