Cdc6 Determines Utilization of p21WAF1/CIP1-dependent Damage Checkpoint in S Phase Cells

2008 
Abstract When cells traversing G1 are irradiated with UV light, two parallel damage checkpoint pathways are activated: Chk1-Cdc25A and p53-p21WAF1/CIP1, both targeting Cdk2, but the latter inducing a long lasting arrest. In similarly treated S phase-progressing cells, however, only the Cdc25A-dependent checkpoint is active. We have recently found that the p21-dependent checkpoint can be activated and induce a prolonged arrest if S phase cells are damaged with a base-modifying agent, such as methyl methanesulfonate (MMS) and cisplatin. But the mechanistic basis for the differential activation of the p21-dependent checkpoint by different DNA damaging agents is not understood. Here we report that treatment of S phase cells with MMS but not a comparable dose of UV light elicits proteasome-mediated degradation of Cdc6, the assembler of pre-replicative complexes, which allows induced p21 to bind Cdk2, thereby extending inactivation of Cdk2 and S phase arrest. Consistently, enforced expression of Cdc6 largely eliminates the prolonged S phase arrest and Cdk2 inactivation induced with MMS, whereas RNA interference-mediated Cdc6 knockdown not only prolongs such arrest and inactivation but also effectively activates the p21-dependent checkpoint in the UV-irradiated S phase cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    18
    Citations
    NaN
    KQI
    []