Chemical Excision of Tetrahedral FeSe2 Chains from the Superconductor FeSe: Synthesis, Crystal Structure, and Magnetism of Fe3Se4(en)2

2013 
Fragments of the superconducting FeSe layer, FeSe2 tetrahedral chains, were stabilized in the crystal structure of a new mixed-valent compound Fe3Se4(en)2 (en = ethylenediamine) synthesized from elemental Fe and Se. The FeSe2 chains are separated from each other by means of Fe(en)2 linkers. Mossbauer spectroscopy and magnetometry reveal strong magnetic interactions within the FeSe2 chains which result in antiferromagnetic ordering below 170 K. According to DFT calculations, anisotropic transport and magnetic properties are expected for Fe3Se4(en)2. This compound offers a unique way to manipulate the properties of the Fe–Se infinite fragments by varying the topology and charge of the Fe-amino linkers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    28
    Citations
    NaN
    KQI
    []