Antagonists to endothelin receptor type B promote apoptosis in human pulmonary arterial smooth muscle cells

2016 
Abstract Aims Vascular remodeling results from aberrations in the balance between cell proliferation and death, which is seen in the obstructive vasculature of pulmonary arterial hypertension (PAH). Endothelin (ET)-1 has a potent proliferative activity on vascular smooth muscle cells, and ET receptor inhibitors are used to treat PAH; however, it remains unclear whether ET receptor inhibition contributes to the apoptosis of pulmonary arterial smooth muscle cells (PASMCs), another cause of pulmonary vascular remodeling. Main methods Cultured human PASMCs were treated with the ET A receptor antagonist BQ-123 (100 μM), or the ET B antagonist A-192621 (1 – 100 μM) or BQ-788 (1 – 100 μM) for 48 h. The cells were then incubated for another 24 h with or without doxorubicin (DOX, 1 μM), an anthracyclin antitumor antibiotic that promotes p53-mediated apoptosis. Cell viability and apoptosis were evaluated by MTT assays, caspase-3/7 activity assays, and Western blots for cleaved caspase-3 expression. Key findings The viability of PASMCs was significantly decreased by A-192621 and BQ-788, in a dose-dependent manner. A-192621 and BQ-788 significantly increased the caspase-3/7 activity and cleaved caspase-3 expression in PASMCs. The PASMCs' susceptibility to DOX-induced apoptosis was significantly higher in the presence of A-192621 and BQ-788 than with vehicle. However, BQ-123 did not affect these parameters. Significance Blockade of the ET B receptor increases the extent of apoptosis and susceptibility to DOX-induced apoptosis in PASMCs. Apoptosis caused by ET B receptor blockade in PASMCs may be one of the mechanisms by which vascular remodeling is reduced in ET receptor inhibitor-based PAH treatments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    5
    Citations
    NaN
    KQI
    []