First-principle study on electronic structure and optical properties of GaN nanowires with different cross-sections

2016 
This paper explores the properties of intrinsic gallium nitride (GaN) nanowires (NWs) in terms of formation energy, band structure, density of state (DOS) and optical properties with plane-wave ultrasoft pseudopotential method based on first-principles. Results show that after relaxation, N atoms of the outer layers move outwards, while Ga atoms move inwards, and the relaxation of surface atomic structure appears less obvious with the increasing cross-sectional area. Comparing different cross-sections of GaN NWs, it is found that the formation energy decreases and the stability goes stronger with the increasing size. With the increasing cross-section, the bandgap is decreased. Moreover, through comparative investigation in optical properties between GaN NWs and bulk GaN, a valuable phenomenom is found that the static dielectric constants of GaN NWs are notably lower, which contributes remarkably to the excellent absorbing performance of GaN NWs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []