Insulated Interlayer for Efficient, and Photostable Electron-Transport-Layer-Free Perovskite Solar Cells

2018 
Currently, the most efficient perovskite solar cells (PSCs) mainly use planar and mesoporous titanium dioxide (TiO2) as an electron-transport layer (ETL). However, because of its intrinsic photocatalytic properties, TiO2 can decompose perovskite absorber and lead to poor stability under solar illumination (ultraviolet light). Herein, a simplified architectural ETL-free PSC with enhanced efficiency and outstanding photostability is produced by the facile deposition of a bathocuproine (BCP) interlayer. Power conversion efficiency of the ETL-free PSC improves from 15.56 to 19.07% after inserting the BCP layer, which is the highest efficiency reported for PSCs involving an ETL-free architecture, versus 19.03% for the n–i–p full device using TiO2 as an ETL. The BCP interlayer has been demonstrated to have several positive effects on the photovoltaic performances of devices, such as “modulation doping” of the perovskite layer, modification of FTO surface work function, and enhancing the charge-transfer efficien...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    23
    Citations
    NaN
    KQI
    []